University of Minnesota Wearable Technology Lab

Surface-Mount Fabrication of Stitched E-Textile **Circuits for Garment-Integrated Technologies**

Md. Tahmidul Islam Molla, Steven Goodman, Crystal Compton, Mary Ellen Berglund, Nicholas Schleif, Cade Zacharias, and Lucy E. Dunne

Wearable Technology Lab, University of Minnesota

Introduction

The objective of this project is the development of a manufacturing method for electronic textiles where and traces interconnects are stitched to a textile substrate, and surface-mount components populated using reflow soldering are processes. A simulated high-intensity wear test and a long-term launderability test ensured that the method can produce highly durable electronic textiles. Further, we implement the manufacturing technique in an LED matrix display application, a motion responsive visual display shirt, and a sensing garment.

	5mm LEDs	3mm LEDs	Total
2 stitch	10	10	20

Low-melt solder paste mixed along with equal amount of gel flux and direct contact heating method was used.

Methods Surface-Mount Manufacturing of E-Textiles

	5mm LEDs	3mm LEDs	1mm LEDs	Total
2 stitch	5	5	5	15
4 stitch	5	5	5	15
6 stitch	5	5	-	10

Failure Categorization

A. Failure between the solder joint and the LED pad (48%)

Samples were tested using a tumble dryer for 14 hours.

Refined Method Results

- The failure rate reduced to 3% from 26%.
- Poor mechanical connection was identified as the main reason for the failures.

Launderability of E-Textiles

After around 17 hours of rigorous washing and drying, measured a 1.5% failure rate for component solder joints.

LED Matrix and A Motion Responsive Visual **Display Shirt**

Solder paste applied manually onto traces and radiant heating was used for LED population.

Tumble Durability Testing

Samples remained in active dryer for a pre-Samples were determined placed in a time standard increment home tumble dryer, along with five hand towels and three tennis balls

Testing process repeated for a total of 845 minutes (around 14 hours)

- **C.** Failure within the LED package (5%)

Causes of Failure

- Variation in the amount of solder
- Quality of joint structure
- Quality of the mechanical connection betwee LED & solder and solder & thread

Not enough

Cold joint True Poor mechanical joints

New reflow

technique using a

PowerPress

industrial plate

heat press

Method Refinement

D. Failure within the solder joint (2%)

B. Failure between the solder

joint and the thread trace (45%)

Current work: A Sensing Garment

Tumble Durability Testing Results **Total Joint Failures**

	\cap	1	2			C		: NI	T	T	ЪT	TΤ		0.01	The second s	0	OF	N	fra	an Na	117 C	10	ν r e	Å.
-	\sim	L	U	L		0	I G	עוי		J	L.	ΤV	- EF	ເວເ		Ι.	UГ	11.	111	MIN	(E_{i})	۶U	11	A

Solder stencil

reflow