Subjective Comfort and Emotional Effects of **On-body Compression**

Esther Foo, J. Walter Lee, Simon Ozbek, Brad Holschuh

Human Factors and Ergonomics

Introduction

The sensation of touch is an important facet in haptic communication and carries huge emotional significance [1-3]. Much research in haptics has focused on taps and vibrations, but compression has been understudied. One type of compression therapeutically administered to improve circulation, decrease anxiety, and promote feelings of calmness is known as deep touch pressure (DTP) [1-4]. DTP is used to treat sensory processing disorder (SPD), attention deficit hyperactive disorder (ADHD), or autism spectrum disorder (ASD). Conventionally, DTP is administered via (1) passive compressive garments that are non-controllable and difficult to don/doff, or (2) pneumatically inflated garments that are limited in mobility and portability. The overarching motivation is to develop active garments that are able to provide necessary DTP on the body. This study seeks to understand the subjective comfort and emotional effects when compression is applied to the upper body (torso, chest, and shoulder areas).

Results: Phase 3 Design Implications

i. Garment <u>Comfort</u>

- Balance between compliant and stiff fabric (pressure vs. comfort)
- Smoother transition on garment edge
- Flexible fabric to allow joint movement \bullet • Incorporate compression sleeves

Results: Phase 1 Garment Design

Figure 2: The red straps correspond to the outer shoulder strap, blue straps correspond to the inner shoulder strap, and green straps for torso straps. Test Conditions: (a) Straight, (b) One-side crossed, (c) Two-sides crossed, and (d) Mixed.

Results: Phase 2 Pilot Study (a) **Subjective Comfort**

Figure 3: CALM Comfort Rating Results of comfort: trunk of body, middle / lower back, abdomen, front of chest, shoulders and upper back / shoulder blade.

• Separate designs for men and women

ii. Pressure Administration

- More stiffness on the back, lower spine, and sides should be incorporated
- Should not prevent normal breathing

ii. Emotional Effects

- 3/5 of participants reported no perceived changes in mood
- Distribution is similar to a hug, but lacking warmth
- Fabric stiffness interferes with realism

Future Work

- Phase 3: Develop active garment to provide remote stimulation
- Integrate automated, computermediated actuator system into garment
- Determine actual pressures applied

Phase 1: Design of test garment to study effects of compression on the body

Phase 2: Pilot test to understand reactions to compression on the body

Phase 3: Development of active garment to provide remote stimulation

Figure 1: Hook-and- Loop strap test garment (front, side, and back). The graded hook-and-loop straps are anchored on the shoulders and are free to move

(b) **Emotional Effects**

Figure 4: SAM Emotional Rating Results (dominance, arousal and valence).

(c) **Direction of Compression Preference**

Participant ID	Front	Back						
S0 I	Two-side crossed	Straight						
S 02	Straight	Straight						
S03	Two Side Crossed	Two Side Crossed						
S04	Straight	Straight						
S05	Two Side Crossed (lower anchor)	Two side Crossed (lower anchor)						

Establish thresholds of pressure perception, duration of wear, and optimal intensity of pressure

Acknowledgements

This research was supported by the National Science Foundation CRII Grant #1656995.

References

[1] W. Schiff and M. A. Heller, The Psychology of Touch. New Jersey, 1991.

[2] J. R. Hegarty and E. Gale, "Touch as a therapeutic medium for people with challenging behaviours," Br. J. Learn. Disabil., vol. 24, no. 1, pp. 26–32, 1996.

[3] T. Grandin, "Calming effects of deep touch pressure in patients with autistic disorder, college students, and animals.," J. Child Adolesc. Psychopharmacol., vol. 2, no. 1, pp. 63–72, 1992.

[4] H. Pohl, P. Brandes, H. N. Quang, and M. Rohs, "Squeezeback: Pneumatic Compression for Notifications," Proc. SIGCHI Conf. Hum. Factors Comput. Syst. - CHI '17, 2017.

\sim	\sim	1 1		\sim	~ E	EC	10	NI	T	Twi	111	7 T 7 T 7	CT T	7777	OF	3.4	[TNT	NES(0.7714
	${}^{\circ}$		ᄂᄃ	G	OF	E 3	I G	IN		Л	1/	/ EF	(31	Ιï	OF	IVI	LIN	NES	JIA

